RAID (“Redundant Array of Inexpensive Disks” or “Redundant Array of Independent Disks”) is a data storage virtualization technology that combines multiple physical disk drive components into one or more logical units for data redundancy, performance improvement, or both. This was in contrast to the previous concept of highly reliable mainframe disk drives referred to as “single large expensive disk” (SLED).
Data is distributed across the drives in one of several ways, referred to as RAID levels, depending on the required level of redundancy and performance. The different schemes, or data distribution layouts, are named by the word “RAID” followed by a number, for example, RAID 0 or RAID 1. Each scheme, or RAID level, provides a different balance among the key goals: reliability, availability, performance, and capacity. RAID levels greater than RAID 0 protect unrecoverable sector read errors, as well as against failures of whole physical drives.
History
The term “RAID” was invented by David Patterson, Garth A. Gibson, and Randy Katz at the University of California, Berkeley in 1987. In their June 1988 paper “A Case for Redundant Arrays of Inexpensive Disks (RAID)”, presented at the SIGMOD conference, they argued that the top-performing mainframe disk drives of the time could be beaten on performance by an array of the inexpensive drives that had been developed for the growing personal computer market. Although failures would rise in proportion to the number of drives, by configuring for redundancy, the reliability of an array could far exceed that of any large single drive.
Although not yet using that terminology, the technologies of the five levels of RAID named in the June 1988 paper were used in various products before the paper’s publication, including the following:
- Mirroring (RAID 1) was well established in the 1970s including, for example, Tandem NonStop Systems.
- In 1977, Norman Ken Ouchi at IBM filed a patent disclosing what was subsequently named RAID 4.
- Around 1983, DEC began shipping subsystem mirrored RA8X disk drives (now known as RAID 1) as part of its HSC50 subsystem.
- In 1986, Clark et al. at IBM filed a patent disclosing what was subsequently named RAID 5.
- Around 1988, the Thinking Machines’ DataVault used error correction codes (now known as RAID 2) in an array of disk drives. A similar approach was used in the early 1960s on the IBM 353.
Industry manufacturers later redefined the RAID acronym to stand for “Redundant Array of Independent Disks”.
Overview
Many RAID levels employ an error protection scheme called “parity”, a widely used method in information technology to provide fault tolerance in a given set of data. Most use simple XOR, but RAID 6 uses two separate parities based respectively on addition and multiplication in a particular Galois field or Reed–Solomon error correction.
RAID can also provide data security with solid-state drives (SSDs) without the expense of an all-SSD system. For example, a fast SSD can be mirrored with a mechanical drive. For this configuration to provide a significant speed advantage an appropriate controller is needed that uses the fast SSD for all read operations. Adaptec calls this “hybrid RAID”.
Standard Levels
Originally, there were five standard levels of RAID, but many variations have evolved, including several nested levels and many non-standard levels (mostly proprietary). RAID levels and their associated data formats are standardized by the Storage Networking Industry Association (SNIA) in the Common RAID Disk Drive Format (DDF) standard:
RAID 0
This consists of striping, but no mirroring or parity. Compared to a spanned volume, the capacity of it’s volume is the same. It is the sum of the capacities of the drives in the set. But because striping distributes the contents of each file among all drives in the set, the failure of any drive causes the entire volume and all files to be lost. In comparison, a spanned volume preserves the files on the unfailing drives. The benefit of this is that the throughput of reading and write operations to any file is multiplied by the number of drives because, unlike spanned volumes, reads and writes are done concurrently.
RAID 1
RAID 1 consists of data mirroring, without parity or striping. Data is written identically to two or more drives, thereby producing a “mirrored set” of drives. Thus, any read request can be serviced by any drive in the set. If a request is broadcast to every drive in the set, it can be serviced by the drive that accesses the data first (depending on its seek time and rotational latency), improving performance. Sustained read throughput, if the controller or software is optimized for it, approaches the sum of throughputs of every drive in the set, just as for the previous level. The actual read throughput of most RAID 1 implementations is slower than the fastest drive. Write throughput is always slower because every drive must be updated, and the slowest drive limits the write performance. The array continues to operate as long as at least one drive is functioning.
RAID 2
RAID 2 consists of bit-level striping with dedicated Hamming-code parity. All disk spindle rotation is synchronized and data is striped such that each sequential bit is on a different drive. Hamming-code parity is calculated across corresponding bits and stored on at least one parity drive. This level is of historical significance only; although it was used on some early machines (for example, the Thinking Machines CM-2), as of 2014 it is not used by any commercially available system.
RAID 3
RAID 3 consists of byte-level striping with dedicated parity. All disk spindle rotation is synchronized and data is striped such that each sequential byte is on a different drive. Parity is calculated across corresponding bytes and stored on a dedicated parity drive. Although implementations exist, RAID 3 is not commonly used in practice.
RAID 4
RAID 4 consists of block-level striping with dedicated parity. This level was previously used by NetApp but has now been largely replaced by a proprietary implementation of RAID 4 with two parity disks, called RAID-DP. The main advantage of RAID 4 over RAID 2 and 3 is I/O parallelism: in RAID 2 and 3, a single read I/O operation requires reading the whole group of data drives, while in RAID 4 one I/O read operation does not have to spread across all data drives. As a result, more I/O operations can be executed in parallel, improving the performance of small transfers.
RAID 5
RAID 5 consists of block-level striping with distributed parity. Unlike RAID 4, parity information is distributed among the drives, requiring all drives but one to be present to operate. Upon failure of a single drive, subsequent reads can be calculated from the distributed parity so that no data is lost. RAID 5 requires at least three disks. Like all single-parity concepts, large RAID 5 implementations are susceptible to system failures. The reason being trends regarding array rebuild time and the chance of drive failure during the rebuild. Rebuilding an array requires reading data from all disks, opening a chance for second drive failure, and the loss of the entire array. RAID 6 consists of block-level striping with double distributed parity. Double parity provides fault tolerance up to two failed drives. This makes larger RAID groups more practical, especially for high-availability systems, as large-capacity drives take longer to restore.
RAID 6
RAID 6 requires a minimum of four disks. As with RAID 5, a single drive failure results in reduced performance of the whole array until the replacement. With this, using drives from multiple sources, it is possible to mitigate most of the problems associated with RAID 5. The larger the drive capacities and the larger the array size, the more important it becomes to choose RAID 6.
Share Your Comments & Feedback